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1. INTRODUCTION

For k > 1, let S.* denote the set of polynomial splines of order k (or, degree
k — 1) on the partition 7 = {t,}7_, of the unit interval. Here

0:t0<tl<...<1n:1,

so that S,* consists of all s € C¥2 [0, 1] which on each of the intervals
(t tie1), i=0, ..., n — 1, reduce to a polynomial of degree <k — 1.

For k = 2m, let I* denote the linear operation of spline interpolation, i.c.,
[4], for each f e C™! [0, 1], 1* fis the unique element of S,* satisfying

(I 1)) = (1), i=0,...n, (P
TN =,9), i=0,nj=1,...,m—1.
We are interested in the behavior of
W =L N j=0,...,2m—1,
as the normof =,
[7l = max(tis) — 1,),
tends to zero. Here, and below,

lglo=sup{|g(®)]:0<t<1}.

Much is known about this problem in certain special cases. For one, the case
k = 4 of cubic spline interpolation has been covered extensively by many: {/],
[21, [3], [12], [14], [15]. For the purposes of this note, Sharma and Meir’s result
[14] is the most pertinent. They prove that if f € C? [0, 1], then

I(f = LA P < 4(f @5 [7])
for all partitions = of [0, 1], where
w(g; 8) = sup{[g(s) —g()|: [s— 1| <38, s1e(0, 1]}

is the modulus of continuity of g on [0, 1].
This implies [6] that

f = Lo < K|=]*
452
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for all fe C® [0, 1] with w(f?); 8) < 8, for all § >0, the constant K being
independent of 7 or f. A similar result had been obtained earlier [3] undersome
restriction on 7.

For k > 4, little is known except in the case of a uniform partition {71, (9],
[131, [16], [17]. There are some results [10], [/4] for k = 6 in the limiting case
that all points of 7 are repeated twice, i.e., value as well as first derivative are
interpolated at each 7,, and, correspondingly, the elements of .S,,¢ are merely in
[C’110, 1].

In this note, it is proved that for all f e C©®) [0, 1],

ICf = LYo < Ky (£ 5 [,

where the constant K; does not depend on = or f.

It is hoped that the method of proof will be useful in the treatment of the
general case. The analysis is therefore carried through for arbitrary k up to the
point where the complexity of certain computations makes me settle for k = 6.

2. LEAST SQUARES APPROXIMATION BY SPLINES

Letm > 2, and let L™ denote the linear projector on C [0, 1] which associates
with each g € C [0, 1] its best approximation L,” g in S,™ with respect to the
norm

lelo =[], le®iza] ™.

LeMMA 2.1, If there exists a constant c,, independent of m, such that
1Lz = sup{lIL:" ]/l 8l; & € C[0, 11} < Cmy
then, for all f € C™[0,1],
ICf = 3] < Kna(f ™5 |2,

where K,, is independent of = or f.

Proof. By [4],if f € C™ [0, 1], then
(I2nf)m = Lmfem,
Hence, as L™ is a linear projector with S,™ as its range,

I(f = 2m/)™], < (1 + L") ) dist(f ™, 8.m),
where
diSt(ga Srrm) = inf ”g - s”oo'

m
sesy
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Since, by [5], for g € C[0,1],
dist(g, S,™) < D, w(g; 7)),

where the constant D,, depends neither on g nor on =, the conclusion follows.
Q.E.D.

COROLLARY. Under the assumption of Lemma 2.1, there exists a constant C,,
independent of =, such that for all f € C*"1 [0, 1] with w(f ?m~V); 8) < 8, for all
3=0,

1f =" fllo < Callm]*™.

Proof. By [5], there exists a constant k;, independent of f or =, such that
dist(f ™), S,") < kyf} 7™
for all f satisfying the above assumptions. Hence,
1 = 1™ < U+ cn) Ko™

follows. But as 72" f interpolates f at the points of =, repeated application of
Rolle’s Theorem yields from this

I(f =B <+ e bypsfnl®™,  j=0,...,m,

where, again, the constants p; do not depend on for =. Q.ED.

For the remainder of this section, we shall be concerned with bounding
L7

First, 1 general observation. If {x,};_, is a sequence of points in a real normed
linear space X, and {A;};_, is a sequence of continuous linear functionals on X,
then the conditions

DM~

Pf=3S wxy Mf—Pf)=0, i=1,..,r, foralifeX,

1

]

i

define a continuous linear projector P on X, with range the linear span of
{x;},", provided the matrix

A=)
is nonsingular. We shall refer to P in this case as being given or defined by
{x}" and (A}
LemMa 2.2, Let X be a real normed linear space and let P be the linear pro-
jector on X given by {x;}," < X and {A;}," < X*. Then
|1Pl| < ] 47 - max] A, Ay
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where

Nledlo-

r
c=sup|| > oyx;

aeR™ || i=1
Remark. We use the notations

||, = max|e;|, forall «=(x;) R,
i

and
[B]l = sup{|| Bo| o[ t]l o : @ € RS,

where B is any real r x r matrix.

Proof of Lemma2.2. Letf € X and Pf = 3;_; o;x;. Then

IPfl <clallo, and Aa=@Af)i.
Hence
1A < el A7 Ju )] < C]}A“'llw'm?xu)\ill 11,

which proves (2.1), as f was arbitrary. Q.E.D.

As is well known, L™ is given by {x,}," and {A;}," where {x,}" is any basis of
S,", and

Mf=| ; wOf@©d, i=1,...r, forallfecClo,1],
with {y;}," any basis of S,™. We shall choose x; and y, in such a way that

sup jl oy X f ol = m?XHMI =1

For then, by Lemma 2.2,
L7 < 4™ s

and the problem of bounding L,™ reduces to bounding the matrix 4 = (A, x;)
below in the uniform norm, uniformly with respect to .

For ease of notation, it is convenient to extend the partition = of [0, 1] by the
adjunction of points

tl—2m<"’<t—l<0! l<tn+l<"'<tn+2m——h

which, for the present, are otherwise arbitrary. Later, the first few of the
additional ¢,’s will be made to coalesce, i.e.,

tl—m=--~=t—l=os 1=tn+l="'='tn+l—m' (2'2)
30
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Define
() =g(t;, ..., tigm; D tiym— 1), forallzeR, 2.3)

where g(t;, ..., t;im; 1) is the mth divided difference in s, on the points
t, ... tim, Of the function

gls; ) =(—nrt 29
Further, set
A f=m j T 8ty s tiiws D) f() . (2.5)
The following facts about x; and A; are known [8], [5];

LEMMA 2.3 (i) The function x(t) vanishes outside the interval [t,, t,,,] and is
positive on (t;, ty ).

(i) The sequence of functions {x;};=}_, (restricted to the interval [0,1]) is a
basis for S,™; further, foralla; € Ryi=1—m, ..., n— 1, one has

| ; ay Xl < miaxl“il'

i) If f e CI], with [t tiim] < I, then
|Af| <sup|f ().
tel
COROLLARY. The linear projector L,™ is given by {x}i7}_ ., and {AJiZ}
provided (2.2) holds. In that case
IL"o <47 o  where A=(A;x)).

The calculation of bounds on | 4~}], for a given real matrix A4 is in general
difficult. The best-known result concerns strictly diagonally dominant A4: If
A = (“ij)’ and

min]“u = 2 eyl ’ >d'>0,
i iZi
then 4! exists and

|47 <d.

This result is applicable to the matrix A under discussion only in the simplest
case, m = 1.
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LemMa 2.4. If all (n— 1)-minors of the nx n matrix A=/ («,;) are non-
negative and, for some y = (y,),

min ( z (—‘l)l_j‘)/j (XU) = d—l > 0,
i Jj=1

then A~ exists and
147 < d|y].

Proof. Let B be the algebraic adjoint of A and let D be the diagonal matrix
((-1)'6;,), where 8, is the Kronecker delta. Then, by assumption, DBD-! has
all entries nonnegative, and9 = DA D!y has all components >d~! > 0. Hence

det(4)y = DBD-(DADY)y

is not zero, unless B = 0, which would imply 4 = 0, a contradiction. Therefore
A Vexists and (8;;) = DA~ D! has all entries nonnegative. With this,

17l = (DA™ D)., = max

> 8,9,
J=1
> (max i &,j) min %; > DA™ DY dt;
i Jj=1 i
hence, [ 4!, = DA~ D[, <d|y]. QED.

As we shall show in a moment, the matrix 4 = (},x;) has all minors non-
negative, so that Lemma 2.4 applies. Further, by definition (2.3) of x; and (2.5)
of A,

Axy=m(lem— 1)) f:im 8t ooy Ciams 1) 85, - - oy Livms 1),
and, therefore, by Lemma 2.3 (i),
Ax;=0 if t.<t; or t.<t. .7
This implies that 4 is a band matrix, and that

Aixy=fi (ti_mits oo tipamea)s Lj=-m+1,..,n-1,
where
Sy sm — Sr) f::'g(so, ooy S 8)E(Sry o vy Spams 2) A,
SlSmits s Sam) =1 for|r|<m—1,
0 otherwise.
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Also, if Y_3my2, +..» Vnym-2 are any scalars, and (2.2) holds, then

n—1 i+m—1
2 Ayix)= 2 Ayix)s i=~-m+1,...,n—1, 2.9)
J=—m+1 j=i—-m+1

since by (2.2) and (2.7),
Ax;=0 for j<—m+1 and j>n+m-2.

Therefore, if y; = C(¢;, ..., t;4m), for all j where Cis some function of m -+ 1
variables, then

m—1

n—1
z (—l)i_j Ai(lyj xj) = z (_l)r C(tiJrr’ veey ti+r+m)f;‘(ti—m+l3 ey ti+2m——l)

j=—m+1 r=—m+1
=F(ti—m+l)"" tl+2m—1), i=—"m+1,...,n—’1.
(2.10)

With this, Lemma 2.4 shows that bounding | 4~!| , independently of = reduces
to showing that for some choice of the function C in (2.10), with

[C(Soy - . -s Sw)| <1 Whenever $;<...<Sp; 5o <Sm
the function F defined by (2.10) satisfies
F(sm+l9 s sZm—l) = d~l > O’

whenever S_,,.; < ... < Sam_1; Si < Siim, for all i,

Theorem 2.1. Let C(sg, ..., Sm) be a real-valued function defined on
T={(s)" € R": 50 <8/ <. < Sms S0 < Sm}
and continuous there, which satisfies

sup|C(sg, - .., Sw)| < 1.
T

Further, define F on

T={(s)imte e R sy <ol < Spmeis 85 < Sp4m fOr allj}
by

m—1

F(s—m+l’ oo s2m-—l) = z (—'l)j C(Sjs LS sj+m) aj’ (211)

J=-m+1

where

Sm
a;= m(sj+m - Sj) jso g(SO’ cons Sms t)g(sj’ croy Sitms t) dt’

j=—m+1,.. n—1. (212)
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If

INfF(S i1y «vos Samey) = dn >0,
T

then
|La"lw < dm,»  for all partitions =. (2.13)

Proof. By the corollary to Lemma 2.3, it is sufficient to prove that | 4!, < d
with 4 = (A;x)).

It follows from ([11]; Ch. 10, Theorem 4.1) or ([7]; Ch. HI, Section 2 (3))
that all minors of the matrix

(861, + - s Sivms uj))'i,j:l
are nonnegative, provided
51 <8< <838 <S8y forallju <u,<...<u,

and r > 1. Since, with the condition (2.2),

1
Aixj = m(tj-l-m - tj) fog(ti’ ey tH—m; t)g(tj’ vy tj+m; t)dts
j=—-14+m,..,n—1,

the “basic composition formula” ({11}; pp. 16-17) implies that all minors of
the matrix 4 are nonnegative.! This, together with the discussion preceding the
theorem, concludes the proof. Q.E.D.

Remark. Since the function F defined by (2.11) and (2.12) is continuous on 7T,
it is sufficient to show that

F(s-—m+1a LCRE SZm—l) > d;ll

forall s_ g <8_m2 <...<Sam_1,to prove (2.13).

3. QUINTIC SPLINE INTERPOLATION

The simplest case covered by the analysis of the preceding section is that of
cubic spline interpolation, i.e., k = 4 or m = 2. In this case, the a;’s of (2.12) are
given by

(81 — S0)/(s2 — 50), J=-1,
a;= %. 2, Jj=0,
(52— s)/(s2—50) j=1.

1 The author gratefully acknowledges that this argument was pointed out to him by W,
Studden.
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Hence, with C(sy, 5, 52) = 1, one gets

F(s_l,...,s3)=1{~ 51— 5o _}_2_:.91___3}_}:%_

3 51— 8 83— 8o
Therefore, | L], < 3.
The next simplest case is quintic spline interpolation, i.e., k =6 or m =3.
In this case

[ 51— S .
B—lsj“‘so’ _]—“ 2,
ﬁoma_2+2m, j=-1,

83— 8o
a;=+5" 1 23~ Bo), Jj=0,
253 — 8 — 8, .
- pJuet B NG P
Bo—ar+ 51— 5% J
§3 — 8 .
=2
L ﬂl 53 __soy J >
where
_ 2
(5712 = $121) , forallj. (3.1)

a (8543 = S ) (5542 — 5,)
One computes
10 jiz (‘"l)jaj =2 — 4By + 2[B_1(51 — 50) + Bi(s3 — 52)]/(53 — 50). (3.2)

Hence, as
0<B;<1, forallj,

the choice C(sy, ..., 53) = 1 will not give the desired result. We shall now show
that with
C(so, - ., 53) = 3(1 + Bo)s

F(s_y, ..., 55) = 1/30.

one gets
One finds that
10 5 1)8,a,= 68— Bofo+B1+ By)
— 2[B_1(s1 — 50) + Bi(s3 — 52)1/(53 — 50)
— B_1[2(s2 — 50) — B_1(51 — 50)1/(53 — 50)
— Bil2(s3 — 5,) — Bi(s3 — 52)]/(55 — 50)

+ B_1 B-as1 — $0)/(s3 — So) + 1 Bals3 — 52)/(s3 — So).
3.3)
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Hence, by omitting the last two terms in (3.3) (which are nonnegative) and
combining (3.2) with (3.3), one gets

20F(s_2, ..., §5) > 2+ Bo(2 — 28, — B_1 — B1)
+ (53 — 50) " [Bo1(B-1(s1 — 50) — 2(s2 — 50))

+ Bi(Bi(ss — 52) — 2(s3 — s1))]. 34
Now,
B, = (s3—82)° 375 _ 4 5278
! (53 —5)(s4—52) 53— 5, 53-8,
hence
— 8 8y — 5 _
ope (55
Similarly,
~Bo —B-1 =~
Therefore,
Bo(2 =280 — 1 —B-1) =0. (3.5)
Next,

h(s) = sls(s1 — 50) — 2(s2 — So)]
has negative slope on 0 < s < 1. Hence, since

0 < B—l 2 — Sp < 17
one has
2
O e Fer R CR]
_ g; - ‘:32 25, — 50). (3.6)

Combining (3.4), (3.5) and (3.6) (with an analogous estimate for the term in
(3.4) involving f3,), one gets

RS )3
WG 5) > [ + B 2 =) |- B

Now set
5, —Sp=a, Sy —8,=b, S3—S52=¢,
to simplify notation. Then by (3.7),
20F(s_3, ..., 85) = [(@® + bla + b)) (b + c)* + (¢ + blc + b)) (a + b)?]/
/(@ + b+ c)(a+ b)Y (c+ b)>. 3.8)
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One has
. %(a + 3b)(a + b)* = %a® + $a? b + 2ab® + 3b°;
ence,

@ +bla+ b =a+a*b+2ab?+ b
= 3(a+ 3b)(a + b)* + Y(ala — b)* + ab® + 2b%)
>3+ 1b)a+b),

since a, b, and ¢ are all nonnegative. Therefore,

20F(s_y, ..., 55) > %l(a + 3b)(a + B)* + (¢ + $b) (c + b)* (a + b)*)/
a+ b+ c)a + b)*(c + b)>?
=%, (3.9

Because of Theorem 2.1 and its corollary, this proves

Theorem 3.1. For all partitions m of [0,1), the linear projector L,* on C [0,1] of
least-squares approximation by S, is bounded in the uniform norm, independently
of m. One has the estimate

IZ:*} < 30.

Hence, there exists a constant Kg such that for all partitions = of [0,1] and all
feC* 0,1 withw(f©),8) < 8, forall 6 >0,

IfP =) < Kgl|m|*,  j=0,...,3,

where I.° denotes interpolation by quintic splines as defined in (1.1).
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