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1. INTRODUCTION

For k ;;;" 1, let STTk denote the set of polynomial splines of order k (or, degree
k - 1) on the partition 7T = {ti}i~o of the unit interval. Here

0= to < t l < ... < to = 1,

so that S/ consists of all s E C k
-

2 [0, 1] which on each of the intervals
(ti , tHI ), i=O, ...,n-I,reducetoapolynomialofdegree<k-l.

For k = 2m, let 1/ denote the linear operation of spline interpolation, i.e"
[4J, for eachf E Cm- 1 (0, IJ, ITTk fis the unique element of8 TTk satisfying

(I/I)(tJ = f(tJ,
(ITTkf)(J)(t,) = 1(Jl(t;),

i=O, ... , n,
i=O,n;j=I, ...,m-l.

(1.1)

We are interested in the behavior of

j=o, ... , 2m-I,

as the norm of 7T,

tends to zero. Here, and below,

lid", = sup{jg(t)l: 0< t < I}.

Much is known about this problem in certain special cases. For one, the case
k = 4 of cubic spline interpolation has been covered extensively by many: (1),
[2J, (3J, [12J, [14J, [15J. For the purposes of this note, Sharma and Meir's result
(14J is the most pertinent. They prove that iflEe 2 (0, I), then

I/(f - ITT4f)(2)1100 < 4w(f(2); 117T[/)

for all partitions 7T of [0, IJ, where

w(g; 8) = sup{! g(s) - g(t)l: Is - t I< 8, s, t E [0, IJ}

is the modulus of continuity ofg on [0, I).
This implies [6J that

III - ITT 4/1100 < Kli7T1I 4

452
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for all f E C (3) [0, 1] with w(f (3); 8) ",;; 8, for all 8;;;;. 0, the constant K being
independent of 17 orf A similar result had been obtained earlier [3] under some
restriction on 17.

For k> 4, little is known except in the case of a uniform partition [1], [9],
[13], [16], [17]. There are some results [10], [14] for k = 6 in the limiting case
that all points of 17 are repeated twice, i.e., value as well as first derivative are
interpolated at each ti, and, correspondingly, the elements of Srr6 are merely in
[C3][0,1].

In this note, it is proved that for allf E C(3) [0, 1],

11(f - I rr6f)(3)II", <; K 3 w(f(3); 1(1711),

where the constant K3 does not depend on 17 orf
It is hoped that the method of proof will be useful in the treatment of the

general case. The analysis is therefore carried through for arbitrary k up to the
point where the complexity of certain computations makes me settle for k = 6.

2. LEAST SQUARES ApPROXIMATION BY SPLINES

Let m ;;;;. 2, and letL rrmdenote the linear projector on C [0, 1] which associates
with each g E C [0, 1] its best approximation L rrmg in Srrmwith respect to the
norm

[I I ] 1/2
IIgl12 = ol g(t)jldt .

LEMMA 2.1. If there exists a constant cm, independent of17, such that

IILrrmll", = sup{IILrrmgll",/llgll",; g E C[Q, I]}",;; Cm,

then,for allf E em [0, 1],

11(f - l;m)(m)ll", <; Kmw(j(m); 111711),

where Kill is independent of17 or f

Proof By [4], iff E em [0,1], then

Hence, as L rrmis a linear projector with Srrmas its range,

where
dist(g, Srrm) = inf II g - sll""

S€S~



454 DE BOOR

Since, by [5J, for gEe [0, 1J,

dist(g, s"m) <;; Dmw(g; 117T!D,

where the constant Drn depends neither on g nor on 7T, the conclusion follows.
Q.E.D.

COROLLARY. Under the assumption ofLemma 2.1, there exists a constant Cm,
independent of7T, such that for allf E c 2m-l [0, 1Jwith w(f(2m-l); 8) ,,;;; 8,/or all
8;>0,

Proof By [5J, there exists a constant k J, independent offor 7T, such that

dist(f(m l, S"m) <;; k11HIm

for allf satisfying the above assumptions. Hence,

follows. But as I~m f interpolates fat the points of 7T, repeated application of
Rolle's Theorem yields from this

j=O, ...,m,

where, again, the constants Pi do not depend onfor 7T. Q.E.D.

For the remainder of this section, we shall be concerned with bounding

IIL"mlloo'
First, a general observation. If {xI}i~1 is a sequence of points in a real normed

linear space X, and {AI}i~ J is a sequence of continuous linear functionals on X,
then the conditions

,
Pf=.2 (XIXI,

I~J

AM'- Pf) = 0, i= 1, ..., r, for allfE X,

define a continuous linear projector P on X, with range the linear span of
{XI}{, provided the matrix

A = (AiXj)i.i~l

is nonsingular. We shall refer to P in this case as being given or defined by
{xlh' and {A I }{.

LEMMA 2.2. Let X be a real normed linear space and let P be the linear pro­
jector on X given by {XI}J' C X and {/\}J' C X*. Then

IIPIJ <;; cIIA-Jlloo'maxIIAdl,
I

(2.1)
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where

c = sup II i OCI XIIIJllocll",.
«eRr 1=1

Remark. We use the notations

lIocll", = maxlocll, for all oc = (OCI) E R',
I

and
IIBII", = sup{IIBocll",fllocll",: oc E R'},

where B is any real r x r matrix.

ProofofLemma2.2. LetfE XandPf= 2~=1 OCtXI' Then

IIPfl1 < cllocll"" and Aoc = (i\d)~=I'

Hence

jjPn < ellA-III", . II(i\d) II '" < ellA-III",' maxlli\,l1'llfII,,
which proves (2.1), asfwas arbitrary.
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Q.E.D.

As is well known, L"mis given by {xlhr and {i\lh' where {x,}!, is any basis of
S"m,and

Ad= f: YI(t)f(t) dt, i = 1, ..., r, for allf E C [0,1],

with {Ylh' any basis of S"m. We shall choose x, and Yt in such a way that

sUPlloctx,ll",fllocll",=maxlli\dl = 1.
«eRr I

For then, by Lemma 2.2,

and the problem of bounding L"mreduces to bounding the matrix A = (i\,x})
below in the uniform norm, uniformly with respect to 7T.

For ease of notation, it is convenient to extend the partition 7T of [0, 1] by the
adjunction of points

t l - 2m < ... <C I <0, 1 < tn+! < ... < tn+2m- h

which, for the present, are otherwise arbitrary. Later, the first few of the
additional tt's will be made to coalesce, i.e.,

30
(l-m = ... = t_1 = 0, 1 = tn+1 = ... = tn+l _ m• (2.2)
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XI(t) = get/> ..., tHm ; t)(tHm - tl), for all t E R, (2.3)

where g(tl, ... , tHm ; t) is the mth divided difference in s, on the points
t/> ..., tl+m' of the function

g(s; t) = (s - t)~-I.

Further, set

Ad= m J:oo get/> ..., tl+m; t) f(t)dt.

The following facts about XI and AI are known [8], [5];

(2.4)

(2.5)

LEMMA 2.3 (i) Thefunction XI(t) vanishes outside the interval [fl' tl+m] and is
positive on (t/> tl+m)'

(ii) The sequence offunctions {xl}7:::I-m (restricted to the interval [0,1]) is a
basisfor Srrm,further,for all rxl E R, i = 1- m, ..., n - 1, one has

II L rxlxdl", < maxlrxtl·
I j

(iii) Iff E C[I], with [t/> tl+m]c I, then

IAdl < suplf(t)l·
tel

COROLLARY. The linear projector Lrrm is given by {xl}7:::;I-m and {Aj}7:::I-m
provided(2.2) holds. In that case

The calculation of bounds on IIA-liloo for a given real matrix A is in general
difficult. The best-known result concerns strictly diagonally dominant A: If
A = (1X1j), and

min f IXII - L IIXIJII > d-l > 0,
I J#I

then A-I exists and

This result is applicable to the matrix A under discussion only in the simplest
case, m = 1.
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LEMMA 2.4. If all (n - I)-minors of the n x n matrix A = (ocu) are non­
negative and,for some Y = (YI),

then A-I exists and

Proof Let B be the algebraic adjoint of A and let D be the diagonal matrix
«-I)l olj), where 0u is the Kronecker delta. Then, by assumption, DBD-I has
all entries nonnegative, andy = DAD-I Yhas all components >d-1 > 0. Hence

is not zero, unless B = 0, which would imply A = 0, a contradiction. Therefore
A -I exists and ([XI)) = DA-I D -1 has all entries nonnegative. With this,

Q.E.D.

As we shall show in a moment, the matrix A = (AIX}) has all minors non­
negative, so that Lemma 2.4 applies. Further, by definition (2.3) of x} and (2.5)
of AI,

and, therefore, by Lemma 2.3 (i),

(2.7)

This implies that A is a band matrix, and that

i,j = -m + 1, ... , n - 1,

where

_ {m(sr+m - Sr) I:: g(so, ..., Sm; t)g(s" ..., Sr+m; t)dt,

f,.(S-m+I' ..., S2m_l) - for Irl.;;;; m - 1,

° otherwise.
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Also, if Y-2m+2' ..., Yn+m-2 are any scalars, and (2.2) holds, then
n-I i+m-I
2: Myjx) = 2: ,'iYjxj),

j=-m+1 j~i-m+1

i = -m + 1, .,., n -1, (2.9)

since by (2.2) and (2.7),

Ai x j = 0 for j < -m + 1 and j> n + m - 2.

Therefore, if Yj = C(tj, ... , tj+m), for allj where C is some function of m + 1
variables, then

n-I m-l

2: (-I)i-i Ai(YjXj) = 2: (-1)' C(ti+r> ... , ti+r+m)fr(ti-m+l> •.. , tH2m_l)
j=-m+1 r=-m+1

i = -m + 1, ..., n - 1.

(2.10)

With this, Lemma 2.4 shows that bounding IIA-III", independently of 'IT reduces
to showing that for some choice of the function C in (2.10), with

/C(so, ..., sm)/ < 1 whenever So < ... < Sm; So < Sm,

the function F defined by (2.10) satisfies

F(sm+l> ..., S2m-I);;;' d- I > 0,

whenever Lm+1 < ... < S2m-l; Si < SHm, for all i.

Theorem 2.1. Let C(so, ... , sm) be a real-valuedfunction defined on

T = {(Si)i:,'O E Rm+l: So < SI < ... < Sm; So < sm}

and continuous there, which satisfies

sUPIc(so, ..., sm)/ < 1.
T

Further, define F on

T= {(Si)r=~;'+I E R3m-l: S-m+I < ... < S2m-l; Sj < Sj+m for allj}

by
m-I

F(s_m+l> ..., S2m-l) = 2: (-1)1 C(Sj> ..., Sj+m)aj>
j=-m+1

(2.11)

where

aj = m(sj+m - Sj) Ism g(so, ..., Sm; t)g(Sj' ..., Sj+m; t)dt,
so

j= -m + 1, ..., n -1. (2.12)
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infF(Lm+1, ••• , S2m-l) ;;;;. d;,! > 0,
T
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for all partitions 7T. (2.13)

Proof By the corollary to Lemma 2.3, it is sufficientto prove that IIA-III", .;;; dm

with A = (AIX)),
It follows from ([11]; Ch. 10, Theorem 4.1) or ([7]; Ch. 1II, Section 2 (3))

that all minors of the matrix

are nonnegative, provided

and r;;;;. 1. Since, with the condition (2.2),

Al x) = m(tJ+m - t)) f~g(th ..., tl+m; t)g(tj> ..., tJ+m; t)dt,

i,j=-l +m, ..., n -1,

the "basic composition formula" ([11]; pp. 16-17) implies that all minors of
the matrix A are nonnegative. l This, together with the discussion preceding the
theorem, concludes the proof. Q.E.D.

Remark. Since the function F defined by (2.11) and (2.12) is continuous on t,
it is sufficient to show that

for all S_m+1 < S-m+2 < ... < S2m-h to prove (2.13).

3. QUINTIC SPLINE INTERPOLATION

The simplest case covered by the analysis of the preceding section is that of
cubic spline interpolation, i.e., k = 4 or m = 2. In this case, the a/s of (2.12) are
given by

{

(Sl - SO)!(S2 - so), j = -1,

a) = t· 2, j = 0,

(S2 - Sl)!(S2 - so), j = 1.

1 The author gratefully acknowledges that this argument was pointed out to him by W.
Studden.
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Hence, with C (so, s1, S2) == 1, one gets

1 { SI - So S2 - SI }F(LI> ..., S3) = -3 + 2 - --- = l-
S2 - So 82 - 80

Therefore, IILn21100 ~ 3.
The next simplest case is quintic spline interpolation, i.e., k = 6 or m = 3.

In this case

j=-2,

j=O,

j= 1,

j=2,

where

(3.1)

One computes
2

10 I (-1)J aJ = 2 - 4po +2[8_1(81 - So) +P1(S3 - S2)]/(S3 - So). (3.2)
J~-2

Hence, as
o~ PJ ~ I, for all},

the choice C(so, ... , S3) == 1 will not give the desired result. We shall now show
that with

one gets

One finds that

C(So, ..., S3) = 1(1 +Po),

F(s_2' ...,85) > 1/30.

- 2[/3-1(81 - So) + /31(S3 - 82)]/(s3 - So)

- /3-1 [2(S2 - So) - /3-1 (SI - SO)]/(S3 - So)

- /31 [2(S3 - 81) - /31(S3 - S2)]/(S3 - So)

+ /3-1 /3-2(SI - SO)/(S3 - 80) +PI /32(S3 - 82)/(S3 - so).

(3.3)



ODD-DEGREE SPLINE INTERPOLATION 461

Hence, by omitting the last two terms in (3.3) (which are nonnegative) and
combining (3.2) with (3.3), one gets

20F(s_2' .. 0' S5) ;;;. 2 + fJo(2 - 2fJo - fJ-1 - fJl)

+ (S3 - SO)-I [fJ-I(fJ-I(SI - so) - 2(S2 - so))

+ fJl(fJI(S3 - S2) - 2(S3 - SI))]' (3.4)

Now,

hence

Similarly,

-fJo - fJ-I ;;;. -1.
Therefore,

(3.5)

Next,

has negative slope on 0 < S < 1. Hence, since

one has

a a SI - So [(SI - so)2 ]
1-'-1 [I-'-I(SI - so) - 2(S2 - so)];;;.-- --- - 2(S2 - so)

S2 - So S2 -So

(SI - so)3
= ( )2 - 2(sl - so). (3.6)

S2 -so

Combining (3.4), (3.5) and (3.6) (with an analogous estimate for the term in
(3.4) involving fJl), one gets

[
(SI - so)3 (S3 - S2)3 ]

20F(L2' ... , S5);;;' (---)2 + ( )2 + 2(S2 - sd /(S3 - So). (3.7)
S2 - So S3 - SI

Now set

S\ -so=a,

to simplify notation. Then by (3.7),

20F(L2' ..., S5) ;;;. [(a3+ b(a + b)2)(b + e)2 + (e3+b(e +b)2)(a + b)2]/

lea + b + e) (a + b)2 (c + b)2. (3.8)



462

One has

hence,
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a3 + b(a + b)2 = a3 + a2b + 2ab2+ b3

= j{a + tb)(a + b)2 + Ha(a - b)2 + ab2+ 2b3)

;;;,!(a + -!b)(a + b)2,

since a, b, and c are all nonnegative. Therefore,

20F(L2' ..., S5);;;' H(a + tb)(a + b)2 + (c + j-b)(c + b)2(a + b)2]/

/(a + b + c) (a + b)2(c + b)2

=t 0~

Because ofTheorem 2.1 and its corollary, this proves

Theorem 3.1. For allpartitions TT of[0, I], the linearprojectorL 113on C [0,1] of
least-squares approximation by S113 is boundedin the uniform norm, independently
ofTT. One has the estimate

IIL11
31Ioo <; 30.

Hence, there exists a constant K6 such that for allpartitions TT oj[O, I] and all
f E C5 [0,1] with W(j(5), 3) <; 3Jor all S;;;, 0,

/If(J) - (I116f)w/loo <; K6/)TT// 6- J, j = 0, ...,3,

where 1,,6 denotes interpolation by quintic splines as defined in (1.1).
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