On the Convergence of Odd-Degree Spline Interpolation

Carl de Boor
Division of Mathematical Sciences, Purdue University, Lafayette, Indiana 47907

1. Introduction

For $k \geqslant 1$, let $S_{\pi}{ }^{k}$ denote the set of polynomial splines of order k (or, degree $k-1)$ on the partition $\pi=\left\{t_{i}\right\}_{t=0}^{n}$ of the unit interval. Here

$$
0=t_{0}<t_{1}<\ldots<t_{n}=1,
$$

so that $S_{\pi}{ }^{k}$ consists of all $s \in C^{k-2}[0,1]$ which on each of the intervals $\left(t_{i}, t_{i+1}\right), i=0, \ldots, n-1$, reduce to a polynomial of degree $\leqslant k-1$.
For $k=2 m$, let $I_{\pi}{ }^{k}$ denote the linear operation of spline interpolation, i.e., [4], for each $f \in C^{m-1}[0,1], I_{\pi}{ }^{k} f$ is the unique element of $S_{\pi}{ }^{k}$ satisfying

$$
\begin{align*}
\left(I_{\pi}{ }^{k} f\right)\left(t_{i}\right) & =f\left(t_{i}\right), \quad i=0, \ldots, n, \\
\left(I_{\pi}^{k} f\right)^{(j)}\left(t_{i}\right) & =f^{(j)}\left(t_{i}\right), \quad i=0, n ; j=1, \ldots, m-1 . \tag{1.1}
\end{align*}
$$

We are interested in the behavior of

$$
\left\|\left(f-I_{\pi}{ }^{k} f\right)^{(J)}\right\|_{\infty}, \quad j=0, \ldots, 2 m-1,
$$

as the norm of π,

$$
\|\pi\|=\max \left(t_{i+1}-t_{i}\right),
$$

tends to zero. Here, and below,

$$
\|g\|_{\infty}=\sup \{|g(t)|: 0 \leqslant t \leqslant 1\} .
$$

Much is known about this problem in certain special cases. For one, the case $k=4$ of cubic spline interpolation has been covered extensively by many: [1], [2], [3], [12], [14], [15]. For the purposes of this note, Sharma and Meir's result [14] is the most pertinent. They prove that if $f \in C^{2}[0,1]$, then

$$
\left\|\left(f-I_{\pi}^{4} f\right)^{(2)}\right\|_{\infty} \leqslant 4 \omega\left(f^{(2)} ;\|\pi\|\right)
$$

for all partitions π of $[0,1]$, where

$$
\omega(g ; \delta)=\sup \{|g(s)-g(t)|:|s-t| \leqslant \delta, \quad s, t \in[0,1]\}
$$

is the modulus of continuity of g on $[0,1]$.
This implies [6] that

$$
\left\|f-I_{\pi}^{4} f\right\|_{452} \leqslant K\|\pi\|^{4}
$$

for all $f \in C^{(3)}[0,1]$ with $\omega\left(f^{(3)} ; \delta\right) \leqslant \delta$, for all $\delta \geqslant 0$, the constant K being independent of π or f. A similar result had been obtained earlier [3] under some restriction on π.

For $k>4$, little is known except in the case of a uniform partition [1], [9], [13], [16], [17]. There are some results [10], [14] for $k=6$ in the limiting case that all points of π are repeated twice, i.e., value as well as first derivative are interpolated at each t_{i}, and, correspondingly, the elements of S_{π}^{6} are merely in [$\left.C^{3}\right][0,1]$.

In this note, it is proved that for all $f \in C^{(3)}[0,1]$,

$$
\left\|\left(f-I_{\pi}{ }^{6} f\right)^{(3)}\right\|_{\infty} \leqslant K_{3} \omega\left(f^{(3)} ;\|\pi\|\right)
$$

where the constant K_{3} does not depend on π or f.
It is hoped that the method of proof will be useful in the treatment of the general case. The analysis is therefore carried through for arbitrary k up to the point where the complexity of certain computations makes me settle for $k=6$.

2. Least Squares Approximation by Splines

Let $m \geqslant 2$, and let $L_{\pi}{ }^{m}$ denote the linear projector on $C[0,1]$ which associates with each $g \in C[0,1]$ its best approximation $L_{\pi}{ }^{m} g$ in $S_{\pi}{ }^{m}$ with respect to the norm

$$
\|g\|_{2}=\left[\int_{0}^{1}|g(t)|^{2} d t\right]^{1 / 2}
$$

Lemma 2.1. If there exists a constant c_{m}, independent of π, such that

$$
\left\|L_{\pi}^{m}\right\|_{\infty}=\sup \left\{\left\|L_{\pi}{ }^{m} g\right\|_{\infty} /\|g\|_{\infty} ; g \in C[0,1]\right\} \leqslant c_{m}
$$

then, for all $f \in C^{m}[0,1]$,

$$
\left\|\left(f-I_{\pi}^{2 m}\right)^{(m)}\right\|_{\infty} \leqslant K_{m} \omega\left(f^{(m)} ;\|\pi\|\right)
$$

where K_{m} is independent of π or f.
Proof. By [4], if $f \in C^{m}[0,1]$, then

$$
\left(I_{\pi}^{2 m} f\right)^{(m)}=L_{\pi}^{m} f^{(m)}
$$

Hence, as $L_{\pi}{ }^{m}$ is a linear projector with $S_{\pi}{ }^{m}$ as its range,

$$
\left\|\left(f-I_{\pi}^{2 m} f\right)^{(m)}\right\|_{\infty} \leqslant\left(1+\left\|L_{\pi}^{m}\right\|_{\infty}\right) \operatorname{dist}\left(f^{(m)}, S_{n}^{m}\right)
$$

where

$$
\operatorname{dist}\left(g, S_{\pi}^{m}\right)=\inf _{s \in S_{\pi}^{m}}\|g-s\|_{\infty} .
$$

Since, by [5], for $g \in C[0,1]$,

$$
\operatorname{dist}\left(g, S_{\pi}^{m}\right) \leqslant \hat{D}_{m} \omega(g ;\|\pi\|)
$$

where the constant \hat{D}_{m} depends neither on g nor on π, the conclusion follows.
Q.E.D.

Corollary. Under the assumption of Lemma 2.1, there exists a constant C_{m}, independent of π, such that for all $f \in C^{2 m-1}[0,1]$ with $\omega\left(f^{(2 m-1)} ; \delta\right) \leqslant \delta$, for all $\delta \geqslant 0$,

$$
\left\|f-I_{\pi}^{2 m} f\right\|_{\infty} \leqslant C_{m}\|\pi\|^{2 m}
$$

Proof. By [5], there exists a constant k_{1}, independent of f or π, such that

$$
\operatorname{dist}\left(f^{(m)}, S_{\pi}^{m}\right) \leqslant k_{1}\|\pi\|^{m}
$$

for all f satisfying the above assumptions. Hence,

$$
\left\|\left(f-I_{\pi}^{2 m}\right)^{(m)}\right\|_{\infty} \leqslant\left(1+c_{m}\right) k_{1}\|\pi\|^{m}
$$

follows. But as $I_{\pi}^{2 m} f$ interpolates f at the points of π, repeated application of Rolle's Theorem yields from this

$$
\left\|\left(f-I_{\pi}^{2 m}\right)^{(j)}\right\|_{\infty} \leqslant\left(1+c_{m}\right) k_{1} p_{j}\|\pi\|^{2 m-j}, \quad j=0, \ldots, m
$$

where, again, the constants p_{j} do not depend on f or π.
Q.E.D.

For the remainder of this section, we shall be concerned with bounding $\left\|L_{\pi}{ }^{m}\right\|_{\infty}$.

First, a general observation. If $\left\{x_{i}\right\}_{i=1}^{r}$ is a sequence of points in a real normed linear space X, and $\left\{\lambda_{i}\right\}_{l=1}^{r}$ is a sequence of continuous linear functionals on X, then the conditions

$$
P f=\sum_{i=1}^{r} \alpha_{i} x_{i}, \quad \lambda_{l}(f-P f)=0, \quad i=1, \ldots, r, \quad \text { for all } f \in X
$$

define a continuous linear projector P on X, with range the linear span of $\left\{x_{i}\right\}_{1}^{r}$, provided the matrix

$$
A=\left(\lambda_{i} x_{j}\right)_{i, j=1}^{r}
$$

is nonsingular. We shall refer to P in this case as being given or defined by $\left\{x_{i}\right\}_{1}{ }^{r}$ and $\left\{\lambda_{i}\right\}_{1}{ }^{r}$.

Lemma 2.2. Let X be a real normed linear space and let P be the linear projector on X given by $\left\{x_{i}\right\}_{1}^{r} \subset X$ and $\left\{\lambda_{i}\right\}_{1}{ }^{r} \subset X^{*}$. Then

$$
\begin{equation*}
\|P\| \leqslant c\left\|A^{-1}\right\|_{\infty} \cdot \max _{i}\left\|\lambda_{i}\right\| \tag{2.1}
\end{equation*}
$$

where

$$
c=\sup _{\alpha \in \mathrm{R}^{r}}\left\|\sum_{i=1}^{r} \alpha_{i} x_{i}\right\|\| \| \alpha \|_{\infty} .
$$

Remark. We use the notations

$$
\|\alpha\|_{\infty}=\max _{i}\left|\alpha_{i}\right|, \quad \text { for all } \alpha=\left(\alpha_{i}\right) \in \mathbf{R}^{r}
$$

and

$$
\|B\|_{\infty}=\sup \left\{\|B \alpha\|_{\infty}\|\alpha\|_{\infty}: \alpha \in \mathbf{R}^{r}\right\}
$$

where B is any real $r \times r$ matrix.
Proof of Lemma 2.2. Let $f \in X$ and $P f=\sum_{i=1}^{r} \alpha_{i} x_{i}$. Then

$$
\|P f\| \leqslant c\|\alpha\|_{\infty}, \quad \text { and } \quad A \alpha=\left(\lambda_{i} f\right)_{i=1}^{r}
$$

Hence

$$
\|P f\| \leqslant c\left\|A^{-1}\right\|_{\infty} \cdot\left\|\left(\lambda_{i} f\right)\right\|_{\infty} \leqslant c\left\|A^{-1}\right\|_{\infty} \cdot \max _{i}\left\|\lambda_{i}\right\| \cdot\|f\|,
$$

which proves (2.1), as f was arbitrary.
Q.E.D.

As is well known, $L_{\pi}{ }^{m}$ is given by $\left\{x_{i}\right\}_{1}{ }^{r}$ and $\left\{\lambda_{i}\right\}_{1}^{r}$ where $\left\{x_{i}\right\}_{1}{ }^{r}$ is any basis of $S_{\pi}{ }^{m}$, and

$$
\lambda_{i} f=\int_{0}^{1} y_{i}(t) f(t) d t, \quad i=1, \ldots, r, \quad \text { for all } f \in C[0,1]
$$

with $\left\{y_{i}\right\}_{1}^{r}$ any basis of S_{π}^{m}. We shall choose x_{i} and y_{i} in such a way that

$$
\sup _{\alpha \in \mathbf{R} r}\left\|\alpha_{i} x_{i}\right\|_{\infty}\|\alpha\|_{\infty}=\max _{i}\left\|\lambda_{i}\right\|=1 .
$$

For then, by Lemma 2.2,

$$
\left\|L_{\pi}^{m}\right\|_{\infty} \leqslant\left\|A^{-1}\right\|_{\infty}
$$

and the problem of bounding $L_{\pi}{ }^{m}$ reduces to bounding the matrix $A=\left(\lambda_{i} x_{j}\right)$ below in the uniform norm, uniformly with respect to π.

For ease of notation, it is convenient to extend the partition π of $[0,1]$ by the adjunction of points

$$
t_{1-2 m}<\ldots<t_{-1}<0, \quad 1<t_{n+1}<\ldots<t_{n+2 m-1}
$$

which, for the present, are otherwise arbitrary. Later, the first few of the additional t_{i} 's will be made to coalesce, i.e.,

$$
\begin{equation*}
t_{1-m}=\ldots=t_{-1}=0, \quad 1=t_{n+1}=\ldots=t_{n+1-m} \tag{2.2}
\end{equation*}
$$

Define

$$
\begin{equation*}
x_{i}(t)=g\left(t_{i}, \ldots, t_{l+m} ; t\right)\left(t_{l+m}-t_{i}\right), \quad \text { for all } t \in \mathbf{R}, \tag{2.3}
\end{equation*}
$$

where $g\left(t_{i}, \ldots, t_{i+m} ; t\right)$ is the m th divided difference in s, on the points t_{i}, \ldots, t_{i+m}, of the function

$$
\begin{equation*}
g(s ; t)=(s-t)_{+}^{m-1} \tag{2.4}
\end{equation*}
$$

Further, set

$$
\begin{equation*}
\lambda_{i} f=m \int_{-\infty}^{\infty} g\left(t_{i}, \ldots, t_{i+m} ; t\right) f(t) d t . \tag{2.5}
\end{equation*}
$$

The following facts about x_{i} and λ_{i} are known [8], [5];
Lemma 2.3 (i) The function $x_{i}(t)$ vanishes outside the interval $\left[t_{i}, t_{i+m}\right]$ and is positive on $\left(t_{i}, t_{i+m}\right)$.
(ii) The sequence of functions $\left\{x_{i}\right\}_{i=1-m}^{n-1}$ (restricted to the interval $\left.[0,1]\right)$ is a basis for $S_{\pi}{ }^{m}$; further, for all $\alpha_{l} \in \mathbf{R}, i=1-m, \ldots, n-1$, one has

$$
\left\|\sum_{i} \alpha_{i} x_{i}\right\|_{\infty} \leqslant \max _{i}\left|\alpha_{i}\right| .
$$

(iii) If $f \in C[I]$, with $\left[t_{i}, t_{i+m}\right] \subset I$, then

$$
\left|\lambda_{t} f\right| \leqslant \sup _{t \in I}|f(t)| .
$$

Corollary. The linear projector $L_{n}{ }^{m}$ is given by $\left\{x_{i}\right\}_{\{=1-m}^{n-1}$ and $\left\{\lambda_{i}\right\}_{i=1-m}^{n-1}$ provided (2.2) holds. In that case

$$
\left\|L_{m}{ }^{m}\right\|_{\infty} \leqslant\left\|A^{-1}\right\|_{\infty}, \quad \text { where } A=\left(\lambda_{l} x_{j}\right) .
$$

The calculation of bounds on $\left\|A^{-1}\right\|_{\infty}$ for a given real matrix A is in general difficult. The best-known result concerns strictly diagonally dominant A : If $A=\left(\alpha_{i j}\right)$, and

$$
\min _{i}\left|\alpha_{i i}-\sum_{j \neq i}\right| \alpha_{i j}| | \geqslant d^{-1}>0
$$

then A^{-1} exists and

$$
\left\|A^{-1}\right\|_{\infty} \leqslant d .
$$

This result is applicable to the matrix A under discussion only in the simplest case, $m=1$.

Lemma 2.4. If all $(n-1)$-minors of the $n \times n$ matrix $A=\left(\alpha_{i j}\right)$ are nonnegative and, for some $\gamma=\left(\gamma_{l}\right)$,

$$
\min _{i}\left(\sum_{j=1}^{n}(-1)^{i-j} \gamma_{J} \alpha_{i j}\right) \geqslant d^{-1}>0
$$

then A^{-1} exists and

$$
\left\|A^{-1}\right\| \leqslant d\|\gamma\|
$$

Proof. Let B be the algebraic adjoint of A and let D be the diagonal matrix $\left((-1)^{i} \delta_{i j}\right)$, where $\delta_{i j}$ is the Kronecker delta. Then, by assumption, $D B D^{-1}$ has all entries nonnegative, and $\hat{\gamma}=D A D^{-1} \gamma$ has all components $\geqslant d^{-1}>0$. Hence

$$
\operatorname{det}(A) \gamma=D B D^{-1}\left(D A D^{-1}\right) \gamma
$$

is not zero, unless $B=0$, which would imply $A=0$, a contradiction. Therefore A^{-1} exists and $\left(\hat{\alpha}_{i j}\right)=D A^{-1} D^{-1}$ has all entries nonnegative. With this,

$$
\begin{aligned}
\|\gamma\|_{\infty} & =\left\|\left(D A^{-1} D^{-1}\right) \hat{\gamma}\right\|_{\infty}=\max _{i}\left|\sum_{j=1}^{n} \hat{\alpha}_{i j} \hat{\gamma}_{j}\right| \\
& \geqslant\left(\max _{i} \sum_{j=1}^{n} \hat{\alpha}_{i j}\right) \min _{i} \hat{\gamma}_{j} \geqslant\left\|D A^{-1} D^{-1}\right\|_{\infty} d^{-1}
\end{aligned}
$$

hence, $\left\|A^{-1}\right\|_{\infty}=\left\|D A^{-1} D^{-1}\right\|_{\infty} \leqslant d\|\gamma\|_{\infty}$.
Q.E.D.

As we shall show in a moment, the matrix $A=\left(\lambda_{i} x_{j}\right)$ has all minors nonnegative, so that Lemma 2.4 applies. Further, by definition (2.3) of x_{j} and (2.5) of λ_{i},

$$
\lambda_{i} x_{j}=m\left(t_{j+m}-t_{j}\right) \int_{t_{i}}^{t_{i+m}} g\left(t_{i}, \ldots, t_{l+m} ; t\right) g\left(t_{j}, \ldots, t_{j+m} ; t\right) d t
$$

and, therefore, by Lemma 2.3 (i),

$$
\begin{equation*}
\lambda_{i} x_{j}=0 \quad \text { if } \quad t_{i+m} \leqslant t_{j} \quad \text { or } \quad t_{j+m} \leqslant t_{i} \tag{2.7}
\end{equation*}
$$

This implies that A is a band matrix, and that

$$
\lambda_{i} x_{j}=f_{i-j}\left(t_{i-m+1}, \ldots, t_{i+2 m-1}\right), \quad i, j=-m+1, \ldots, n-1
$$

where

$$
f_{r}\left(s_{-m+1}, \ldots, s_{2 m-1}\right)=\left\{\begin{array}{l}
m\left(s_{r+m}-s_{r}\right) \int_{s_{0}}^{s_{m}} g\left(s_{0}, \ldots, s_{m} ; t\right) g\left(s_{r}, \ldots, s_{r+m} ; t\right) d t \\
\quad \text { for }|r| \leqslant m-1 \\
0 \quad \text { otherwise }
\end{array}\right.
$$

Also, if $\gamma_{-2 m+2}, \ldots, \gamma_{n+m-2}$ are any scalars, and (2.2) holds, then

$$
\begin{equation*}
\sum_{j=-m+1}^{n-1} \lambda_{i}\left(\gamma_{j} x_{j}\right)=\sum_{j=i-m+1}^{i+m-1} \lambda_{i}\left(\gamma_{j} x_{j}\right), \quad i=-m+1, \ldots, n-1, \tag{2.9}
\end{equation*}
$$

since by (2.2) and (2.7),

$$
\lambda_{i} x_{j}=0 \text { for } j<-m+1 \text { and } j>n+m-2 .
$$

Therefore, if $\gamma_{j}=C\left(t_{j}, \ldots, t_{j+m}\right)$, for all j where C is some function of $m+1$ variables, then

$$
\begin{align*}
\sum_{j=-m+1}^{n-1}(-1)^{i-j} \lambda_{i}\left(\gamma_{j} x_{j}\right) & =\sum_{r=-m+1}^{m-1}(-1)^{r} C\left(t_{i+r}, \ldots, t_{i+r+m}\right) f_{r}\left(t_{i-m+1}, \ldots, t_{i+2 m-1}\right) \\
& =F\left(t_{i-m+1}, \ldots, t_{i+2 m-1}\right), \quad i=-m+1, \ldots, n-1 \tag{2.10}
\end{align*}
$$

With this, Lemma 2.4 shows that bounding $\left\|A^{-1}\right\|_{\infty}$ independently of π reduces to showing that for some choice of the function C in (2.10), with

$$
\left|C\left(s_{0}, \ldots, s_{m}\right)\right| \leqslant 1 \quad \text { whenever } \quad s_{0} \leqslant \ldots \leqslant s_{m} ; s_{0}<s_{m}
$$

the function F defined by (2.10) satisfies

$$
F\left(s_{m+1}, \ldots, s_{2 m-1}\right) \geqslant d^{-1}>0
$$

whenever $s_{-m+1} \leqslant \ldots \leqslant s_{2 m-1} ; s_{i}<s_{i+m}$, for all i.
Theorem 2.1. Let $C\left(s_{0}, \ldots, s_{m}\right)$ be a real-valued function defined on

$$
T=\left\{\left(s_{i}\right)_{i=0}^{m} \in \mathbf{R}^{m+1}: s_{0} \leqslant s_{1} \leqslant \ldots \leqslant s_{m} ; s_{0}<s_{m}\right\}
$$

and continuous there, which satisfies

$$
\sup _{\boldsymbol{T}}\left|C\left(s_{0}, \ldots, s_{m}\right)\right| \leqslant 1 .
$$

Further, define F on

$$
\hat{T}=\left\{\left(s_{i}\right)_{i=-m+1}^{2 m-1} \in \mathbf{R}^{3 m-1}: s_{-m+1} \leqslant \ldots \leqslant s_{2 m-1} ; s_{j}<s_{j+m} \text { for all } j\right\}
$$

by

$$
\begin{equation*}
F\left(s_{-m+1}, \ldots, s_{2 m-1}\right)=\sum_{j=-m+1}^{m-1}(-1)^{j} C\left(s_{j}, \ldots, s_{j+m}\right) a_{j} \tag{2.11}
\end{equation*}
$$

where

$$
\begin{align*}
& a_{j}=m\left(s_{j+m}-s_{j}\right) \int_{s 0}^{s_{m}} g\left(s_{0}, \ldots, s_{m} ; t\right) g\left(s_{j}, \ldots, s_{j+m} ; t\right) d t \\
& j=-m+1, \ldots, n-1 . \tag{2.12}
\end{align*}
$$

If

$$
\inf _{T} F\left(s_{-m+1}, \ldots, s_{2 m-1}\right) \geqslant d_{m}^{-1}>0,
$$

then

$$
\begin{equation*}
\left\|L_{\pi}{ }^{m}\right\|_{\infty} \leqslant d_{m}, \quad \text { for all partitions } \pi . \tag{2.13}
\end{equation*}
$$

Proof. By the corollary to Lemma 2.3, it is sufficient to prove that $\left\|A^{-1}\right\|_{\infty} \leqslant d_{m}$ with $A=\left(\lambda_{t} x_{j}\right)$.
It follows from ([11]; Ch. 10, Theorem 4.1) or ([7]; Ch. III, Section 2 (3)) that all minors of the matrix

$$
\left(g\left(s_{l}, \ldots, s_{i+m} ; u_{j}\right)_{i, j=1}^{r}\right.
$$

are nonnegative, provided

$$
s_{1} \leqslant s_{2} \leqslant \ldots \leqslant s_{r} ; s_{j}<s_{j+m} \text { for all } j ; u_{1}<u_{2}<\ldots<u_{r}
$$

and $r \geqslant 1$. Since, with the condition (2.2),

$$
\begin{aligned}
\lambda_{i} x_{j}=m\left(t_{j+m}-t_{j}\right) \int_{0}^{1} g\left(t_{i}, \ldots, t_{i+m} ; t\right) g\left(t_{j}, \ldots, t_{j+m} ; t\right) d t, \\
i, j=-1+m, \ldots, n-1,
\end{aligned}
$$

the "basic composition formula" ([11]; pp. 16-17) implies that all minors of the matrix A are nonnegative. ${ }^{1}$ This, together with the discussion preceding the theorem, concludes the proof.
Q.E.D.

Remark. Since the function F defined by (2.11) and (2.12) is continuous on \hat{T}, it is sufficient to show that

$$
F\left(s_{-m+1}, \ldots, s_{2 m-1}\right) \geqslant d_{m}^{-1}
$$

for all $s_{-m+1}<s_{-m+2}<\ldots<s_{2 m-1}$, to prove (2.13).

3. Quintic Spline Interpolation

The simplest case covered by the analysis of the preceding section is that of cubic spline interpolation, i.e., $k=4$ or $m=2$. In this case, the a_{j} 's of (2.12) are given by

$$
a_{j}=\frac{1}{3} \cdot \begin{cases}\left(s_{1}-s_{0}\right) /\left(s_{2}-s_{0}\right), & j=-1, \\ 2, & j=0, \\ \left(s_{2}-s_{1}\right) /\left(s_{2}-s_{0}\right), & j=1 .\end{cases}
$$

[^0]Hence, with $C\left(s_{0}, s_{1}, s_{2}\right) \equiv 1$, one gets

$$
F\left(s_{-1}, \ldots, s_{3}\right)=\frac{1}{3}\left\{-\frac{s_{1}-s_{0}}{s_{2}-s_{0}}+2-\frac{s_{2}-s_{1}}{s_{2}-s_{0}}\right\}=\frac{1}{3} .
$$

Therefore, $\left\|L_{\pi}^{2}\right\|_{\infty} \leqslant 3$.
The next simplest case is quintic spline interpolation, i.e., $k=6$ or $m=3$. In this case

$$
a_{j}=\frac{1}{10} \cdot \begin{cases}\beta_{-1} \frac{s_{1}-s_{0}}{s_{3}-s_{0}}, & j=-2 \\ \beta_{0}-a_{-2}+2 \frac{s_{1}+s_{2}-2 s_{0}}{s_{3}-s_{0}}, & j=-1 \\ 2\left(3-\beta_{0}\right), & j=0 \\ \beta_{0}-a_{2}+2 \frac{2 s_{3}-s_{2}-s_{1}}{s_{3}-s_{0}}, & j=1 \\ \beta_{1} \frac{s_{3}-s_{2}}{s_{3}-s_{0}}, & j=2\end{cases}
$$

where

$$
\begin{equation*}
\beta_{j}=\frac{\left(s_{j+2}-s_{j+1}\right)^{2}}{\left(s_{j+3}-s_{j+1}\right)\left(s_{j+2}-s_{j}\right)}, \quad \text { for all } j \tag{3.1}
\end{equation*}
$$

One computes

$$
\begin{equation*}
10 \sum_{j=-2}^{2}(-1)^{j} a_{j}=2-4 \beta_{0}+2\left[\beta_{-1}\left(s_{1}-s_{0}\right)+\beta_{1}\left(s_{3}-s_{2}\right)\right] /\left(s_{3}-s_{0}\right) \tag{3.2}
\end{equation*}
$$

Hence, as

$$
0 \leqslant \beta_{j} \leqslant 1, \quad \text { for all } j,
$$

the choice $C\left(s_{0}, \ldots, s_{3}\right) \equiv 1$ will not give the desired result. We shall now show that with

$$
C\left(s_{0}, \ldots, s_{3}\right)=\frac{1}{2}\left(1+\beta_{0}\right)
$$

one gets

$$
F\left(s_{-2}, \ldots, s_{5}\right) \geqslant 1 / 30
$$

One finds that

$$
\begin{align*}
10 \sum_{j=-2}^{2}(-1)^{j} \beta_{j} a_{j}= & 6 \beta_{0}-\beta_{0}\left(2 \beta_{0}+\beta_{-1}+\beta_{1}\right) \\
& -2\left[\beta_{-1}\left(s_{1}-s_{0}\right)+\beta_{1}\left(s_{3}-s_{2}\right)\right] /\left(s_{3}-s_{0}\right) \\
& -\beta_{-1}\left[2\left(s_{2}-s_{0}\right)-\beta_{-1}\left(s_{1}-s_{0}\right)\right] /\left(s_{3}-s_{0}\right) \\
& -\beta_{1}\left[2\left(s_{3}-s_{1}\right)-\beta_{1}\left(s_{3}-s_{2}\right)\right] /\left(s_{3}-s_{0}\right) \\
& +\beta_{-1} \beta_{-2}\left(s_{1}-s_{0}\right) /\left(s_{3}-s_{0}\right)+\beta_{1} \beta_{2}\left(s_{3}-s_{2}\right) /\left(s_{3}-s_{0}\right) . \tag{3.3}
\end{align*}
$$

Hence, by omitting the last two terms in (3.3) (which are nonnegative) and combining (3.2) with (3.3), one gets

$$
\begin{align*}
20 F\left(s_{-2}, \ldots, s_{5}\right) \geqslant 2 & +\beta_{0}\left(2-2 \beta_{0}-\beta_{-1}-\beta_{1}\right) \\
& +\left(s_{3}-s_{0}\right)^{-1}\left[\beta_{-1}\left(\beta_{-1}\left(s_{1}-s_{0}\right)-2\left(s_{2}-s_{0}\right)\right)\right. \\
& \left.+\beta_{1}\left(\beta_{1}\left(s_{3}-s_{2}\right)-2\left(s_{3}-s_{1}\right)\right)\right] . \tag{3.4}
\end{align*}
$$

Now,

$$
\beta_{1}=\frac{\left(s_{3}-s_{2}\right)^{2}}{\left(s_{3}-s_{1}\right)\left(s_{4}-s_{2}\right)} \leqslant \frac{s_{3}-s_{2}}{s_{3}-s_{1}}=1-\frac{s_{2}-s_{1}}{s_{3}-s_{1}},
$$

hence

$$
-\beta_{0}-\beta_{1} \geqslant-\frac{s_{2}-s_{1}}{s_{3}-s_{1}}-\left(1-\frac{s_{2}-s_{1}}{s_{3}-s_{1}}\right)=-1
$$

Similarly,

$$
-\beta_{0}-\beta_{-1} \geqslant-1
$$

Therefore,

$$
\begin{equation*}
\beta_{0}\left(2-2 \beta_{0}-\beta_{1}-\beta_{-1}\right) \geqslant 0 \tag{3.5}
\end{equation*}
$$

Next,

$$
h(s)=s\left[s\left(s_{1}-s_{0}\right)-2\left(s_{2}-s_{0}\right)\right]
$$

has negative slope on $0<s<1$. Hence, since

$$
0 \leqslant \beta_{-1} \leqslant \frac{s_{1}-s_{0}}{s_{2}-s_{0}} \leqslant 1,
$$

one has

$$
\begin{align*}
\beta_{-1}\left[\beta_{-1}\left(s_{1}-s_{0}\right)-2\left(s_{2}-s_{0}\right)\right] & \geqslant \frac{s_{1}-s_{0}}{s_{2}-s_{0}}\left[\frac{\left(s_{1}-s_{0}\right)^{2}}{s_{2}-s_{0}}-2\left(s_{2}-s_{0}\right)\right] \\
& =\frac{\left(s_{1}-s_{0}\right)^{3}}{\left(s_{2}-s_{0}\right)^{2}}-2\left(s_{1}-s_{0}\right) . \tag{3.6}
\end{align*}
$$

Combining (3.4), (3.5) and (3.6) (with an analogous estimate for the term in (3.4) involving β_{1}), one gets

$$
\begin{equation*}
20 F\left(s_{-2}, \ldots, s_{5}\right) \geqslant\left[\frac{\left(s_{1}-s_{0}\right)^{3}}{\left(s_{2}-s_{0}\right)^{2}}+\frac{\left(s_{3}-s_{2}\right)^{3}}{\left(s_{3}-s_{1}\right)^{2}}+2\left(s_{2}-s_{1}\right)\right] /\left(s_{3}-s_{0}\right) \tag{3.7}
\end{equation*}
$$

Now set

$$
s_{1}-s_{0}=a, \quad s_{2}-s_{1}=b, \quad s_{3}-s_{2}=c
$$

to simplify notation. Then by (3.7),

$$
\begin{gather*}
20 F\left(s_{-2}, \ldots, s_{5}\right) \geqslant\left[\left(a^{3}+b(a+b)^{2}\right)(b+c)^{2}+\left(c^{3}+b(c+b)^{2}\right)(a+b)^{2}\right] / \\
/(a+b+c)(a+b)^{2}(c+b)^{2} \tag{3.8}
\end{gather*}
$$

One has

$$
\frac{2}{3}\left(a+\frac{1}{2} b\right)(a+b)^{2}=\frac{2}{3} a^{3}+\frac{5}{3} a^{2} b+\frac{4}{3} a b^{2}+\frac{1}{3} b^{3}
$$

hence,

$$
\begin{aligned}
a^{3}+b(a+b)^{2} & =a^{3}+a^{2} b+2 a b^{2}+b^{3} \\
& =\frac{2}{3}\left(a+\frac{1}{2} b\right)(a+b)^{2}+\frac{1}{3}\left(a(a-b)^{2}+a b^{2}+2 b^{3}\right) \\
& \geqslant \frac{2}{3}\left(a+\frac{1}{2} b\right)(a+b)^{2},
\end{aligned}
$$

since a, b, and c are all nonnegative. Therefore,

$$
\begin{align*}
20 F\left(s_{-2}, \ldots, s_{5}\right) & \geqslant \frac{2}{3}\left[\left(a+\frac{1}{2} b\right)(a+b)^{2}+\left(c+\frac{1}{2} b\right)(c+b)^{2}(a+b)^{2}\right] / \\
\quad & \quad(a+b+c)(a+b)^{2}(c+b)^{2} \\
& =\frac{3}{3} . \tag{3.9}
\end{align*}
$$

Because of Theorem 2.1 and its corollary, this proves
Theorem 3.1. For all partitions π of $[0,1]$, the linear projector $L_{\pi}{ }^{3}$ on $C[0,1]$ of least-squares approximation by S_{π}^{3} is bounded in the uniform norm, independently of π. One has the estimate

$$
\left\|L_{\pi}{ }^{3}\right\|_{\infty} \leqslant 30
$$

Hence, there exists a constant K_{6} such that for all partitions π of $[0,1]$ and all $f \in C^{5}[0,1]$ with $\omega\left(f^{(5)}, \delta\right) \leqslant \delta$, for all $\delta \geqslant 0$,

$$
\left\|f^{(j)}-\left(I_{\pi}{ }^{6} f\right)^{(j)}\right\|_{\infty} \leqslant K_{6}\|\pi\|^{6-J}, \quad j=0, \ldots, 3
$$

where $I_{\pi}{ }^{6}$ denotes interpolation by quintic splines as defined in (1.1).

References

1. J. H. Ahlberg, E. N. Nilson, and J. L. Walsh, "The Theory of Splines and their Applications." Academic Press, New York, 1967.
2. K. Atkinson, On the order of convergence of natural cubic spline interpolation. Abstract 67T-315, Notices. Am. Math. Soc. 14 (1967), 423.
3. G. Birkhoff and C. De Boor, Error bounds for spline interpolation. J. Math. Mech. 13 (1964), 827-836.
4. C. DE Boor, Best approximation properties of spline functions of odd degree. J. Math. Mech. 12 (1963), 747-749.
5. C. De Boor, On uniform approximation by splines. J. Approx. Theory 1 (1968), 219235.
6. C. de Boor, The Method of Projections etc. Ph.D. Thesis, University of Michigan, Ann Arbor, Mich., 1966.
7. H. Burchard, Interpolation and Approximation by Generalized Convex Functions. Ph.D. Thesis, Purdue University, Lafayette, Ind., 1968.
8. H. B. Curry and I. J. Schoenberg, On Polya frequency functions IV: The fundamental spline functions and their limits. J. d^{\prime} 'Anal. Math. 17 (1966), 71-107.
9. M. Golomb, Approximation by periodic spline interpolants on uniform meshes, J. Approx. Theory 1 (1968), 26-65.
10. C. Hall, On error bounds for spline interpolation. J. Approx. Theory 1(1968), 209-218.
11. S. Karlin, "Total Positivity," Vol. I. Stanford University Press, Stanford, Calif., 1968.
12. S. Nord, Approximation properties of the spline fit. BIT7 (1967), 132-144.
13. W. Quade and L. Collatz, Zur Interpolationstheorie der reellen periodischen Funktionen. Sitzungsber. Preuss. Akad. Wiss., Phys.-Math. Kl. 30 (1938), 383-429.
14. A. Sharma and A. Meir, Degree of approximation of spline interpolation. J. Math. Mech. 15 (1966), 759-767.
15. F. Schurer and E. W. Cheney, The norms of interpolating spline operators. Abstract 68T-B5, Notices. Am. Math. Soc. 15(1968), 790.
16. Ju. N. Subbotin, On piecewise polynomial interpolation. Mat. Zametki 1 (1967), 63-70.
17. B. Swartz, $O\left(h^{2 n+2-l}\right)$-bounds on some spline interpolation errors. Los Alamos Scientific Laboratory Report LA-3886, 1967.

[^0]: ${ }^{1}$ The author gratefully acknowledges that this argument was pointed out to him by W . Studden.

